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ABSTRACT
Purpose The area under the curve (AUC) is commonly used
to assess the extent of exposure of a drug. The same concept
can be applied to generally assess pharmacodynamic responses
and the deviation of a signal from its baseline value. When the
initial condition for the response of interest is not zero, there is
uncertainty in the true value of the baseline measurement. This
necessitates the consideration of the AUC relative to baseline
to account for this inherent uncertainty and variability in
baseline measurements.
Methods An algorithm to calculate the AUC with respect to a
variable baseline is developed by comparing the AUC of the
response curve with the AUC of the baseline while taking into
account uncertainty in both measurements. Furthermore,
positive and negative components of AUC (above and below
baseline) are calculated separately to allow for the identification
of biphasic responses.
Results This algorithm is applied to gene expression data to
illustrate its ability to capture transcriptional responses to a drug
that deviate from baseline and to synthetic data to quantitatively
test its performance.
Conclusions The variable nature of the baseline is an
important aspect to consider when calculating the AUC.

KEY WORDS AUC . baseline . bioinformatics . microarrays .
pharmacogenomics

INTRODUCTION

In pharmacology, the area under the plot of plasma
concentration of a drug versus time after dosage (called
“area under the curve” or AUC) gives insight into the
extent of exposure to a drug and its clearance rate from the
body. By integrating over time rather than looking at
individual concentration measurements, a more accurate
estimate of the overall exposure to the drug is obtained (1).
Such measurements have also been found to be meaningful
for assessing the net pharmacologic response to a given dose
of drug (2).

More generally, a similar measure can be calculated for
any quantitative response that deviates from its baseline
measurement. For instance, when analyzing gene expres-
sion data, one might not be interested only in which genes
are activated or suppressed; it could be more informative to
also consider the extent to which gene expression is
perturbed for full periods of time. Many existing algorithms
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for analyzing gene expression data do not take the time
scale into account, similar to an ANOVA where each time
point is treated as a different condition (3); others take the
ordering of points into account, but not the length of time
between points (4). This could be problematic because
many experiments have high sampling frequencies imme-
diately after the experimental perturbation (e.g. drug
administration) and much lower sampling frequencies as
the response measure slowly recovers. Using the AUC to
evaluate the extent of the transcriptional response of a gene
does account for the temporal ordering of samples and the
period of time between samples.

When the AUC is calculated for an exogenously admin-
istered drug that is not endogenously produced, it is known
that the initial concentration is zero, and, eventually, the drug
will be eliminated and the concentration will return to zero.
However, if there is some nonzero baseline value for the
response of interest, it becomes less clear how to accurately
calculate the AUC. For instance, gene expression values are
not typically zero under normal conditions. But even if this is
taken into account, the baseline cannot be expressed by a
single constant value. It also has some variability. In
particular, a gene regulated by the circadian clock has widely
different expression values throughout the day, but even in a
case where a gene expression profile is flat, normal
biological noise will perturb the gene transcript abun-
dance from its mean value. Because pharmacologic
experiments are typically performed with limited numb-
ers of replicates, incorporating variability in baseline
values into the AUC calculation becomes important.

Thus, we have developed an algorithm to calculate the
AUC for a pharmacologic effect such as gene expression
relative to a variable baseline estimate, which can be used
to discover significant net responses such as transcriptional
regulatory effects in gene expression data. This allows for
the segregation of responses into categories representing
up-regulated, down-regulated, and biphasic responses that
take into account both positive and negative changes in
values. Its performance is assessed by running simulations
on synthetic data. Additionally, the method is applied to
real gene expression data studying the response to acute
corticosteroid treatment in rat liver (5) to test its ability to
select biologically relevant genes.

MATERIALS AND METHODS

The general idea of the proposed method is to estimate
both the overall AUC (called “AUC”) and the baseline
AUC (called “baseline”) for each pharmacologic measure-
ment and then to compare these values to determine if the
AUC significantly deviates from the baseline. Thus, first we
define how these two values are calculated.

Estimating the Baseline and its Error

A simple, ideal experiment would produce frequently
sampled and precise data from both a treated group and
control group, facilitating the direct comparison between
these two groups. Real experiments are often constrained
by limited resources so that they do not meet this ideal
standard; for instance, a control group may only be
available at a single initial time point rather than at every
experimental time point. Depending on the system being
studied and the available experimental data, and assuming
no measurements are made at negative time points, there
are generally three different situations in which the baseline
may be estimated using different methods:

1. Baseline is estimated from measurements at only t=0.
2. Baseline is estimated from measurements at t=0 and

t=Tlast for values that return to baseline by the end of
the experiment.

3. Baseline is estimated from a separate control group
with measurements collected at each time point.

For the first definition, if no separate control group is
available and the only baseline measurement is taken
before treatment, baseline can only be estimated from the
values at this single time point. Then, the baseline is
computed by assuming the response stays constant at its
original mean value from the first time point through the
last time point. Then, the area under this flat line gives the
baseline, and its variability can be expressed by using the
standard deviation of those measurements. This makes
sense for data that do not generally return to baseline, such as
during chronic dosing of a drug in which late measurements
are typically different than early measurements.

The second definition applies in the case where data
exhibit a perturbation followed by a return to baseline, such
as in acute dosing of a drug when enough time is given to
ensure that washout occurs. Measurements from the
beginning and the end of the time series can be used to
estimate the true baseline. In these cases, the baseline is
estimated by averaging the replicates at the first and last
time points and finding the area under the line between
them. The error in the baseline is calculated from the
standard deviation of these replicates. The main advantage
of this, relative to the first definition, is that experiments
typically have a low number of replicates for each
measurement, so by taking the first and last time points
into account, a significantly more accurate estimate for the
baseline can be obtained.

The third definition can only be applied in cases where
measurements for a separate control group are available at
each time point. If these measurements are available, then
they represent an excellent estimate of the baseline. In the
case where the baseline varies (for example, when regulated
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by circadian rhythms), the ratio of the treated and control
AUCs can be computed (6).

Estimating the AUC and Its Error

The AUCs and confidence intervals are calculated by
bootstrapping (7). This method is described in the following
steps:

1. For each data point, sample with replacement from all
of the data points measuring the same response (i.e.
gene expression value, drug concentration, etc.) at the
same time.

2. Calculate the AUC of the resampled data.
3. Repeat steps 1 and 2 many times until the distribution

of AUC values converges.
4. From this bootstrap distribution, calculate the mean

AUC and the desired percentile confidence interval.

This procedure is based on the pooled data boot-
strapping approach, which has been shown to accurately
estimate pharmacokinetic parameters (8). As the experi-
mental data used in this study comes from destructive
sampling, dependence within a replicate across time is not
considered; for experiments in which an individual is
repeatedly sampled over time, the resamplings should take
this dependence into account.

In step 2, the AUC is estimated by using the trapezoidal
rule on the means of the replicates at each time point ti
where i=1,…,m and Ci is the average expression value for
each time point after the resampling in step 1. Then, the
AUC for this resampled data is given by

wi ¼
1
2 ðt2 � t1Þ; i ¼ 1
1
2 ðtiþ1 � ti�1Þ; i ¼ 2; :::;m � 1
1
2 ðtm � tm�1Þ; i ¼ m

8<
: ð1Þ

AUC ¼
Xm
i¼1

wiCi: ð2Þ

In all of the results shown here (on both synthetic and
real data), the number of resamplings performed (step 3) is
10,000. This is well above the point by which the bootstrap
distribution has converged, ensuring that the output
generated in step 4 is stable.

To calculate the baseline, studies using baseline methods
1 and 2 (considering only the first time point or the first and
final time points) likely will not have enough points to allow
for a relatively smooth bootstrap distribution. As fewer data
points are available, discreteness in the bootstrap distribu-
tion leads to biased confidence intervals (7). Thus, in these

cases, the confidence interval is determined by assuming a
normal distribution for the areas and using Bailer’s method
to calculate the variance. Bailer’s method is a direct
calculation of the variance of the AUC, where σi is the
standard deviation of the expression values at time i for a
given measure, and ri is the number of replicates (9).

s2
AUC ¼

Xm
i¼1

w2
i

s2
i

ri

� �
ð3Þ

The above formulas for calculating AUC and its
variance are taken over the interval [0, tm]. However, if a
response is known not to be resolved by tm, these
calculations can be further extrapolated. For instance, in a
single bolus dose experiment, drug concentration can often
be assumed to exponentially decay after tm; applying this
knowledge allows for the calculation of AUC over the
interval [0, ∞], which may be a more appropriate metric in
this particular case (10). In general, for gene expression and
other types of data, such a relationship cannot be assumed,
so the more conservative estimate over [0, tm] should be
used.

Calculating the AUC for Biphasic Responses

Gene expression data often contains biphasic or multiphasic
responses. For instance, consider the data shown in Fig. 1.
In the first gene, there is early down-regulation followed by
late up-regulation before a return to baseline at the final
time point. If the AUC and baseline estimates for these data
were calculated as described above, they would be
approximately the same because the deviations in gene
expression caused by the up-regulation and down-
regulation are of similar magnitudes. This would result in
this gene not being selected as having a significant change
from baseline.

This is seldom a problem in traditional applications of
AUC in pharmacology because, typically, drug responses
only go either up or down and then return to baseline.
Occasionally, the occurrence of rebound is a complica-
tion in pharmacodynamics (11). But for gene expression
data, up-regulation and down-regulation often occur
sequentially, producing biphasic profiles. Thus, the
trapezoidal rule is modified such that areas cannot be
negative. In other words, the area above baseline is added
to the area below baseline, and both of those areas are
positive numbers. Algorithmically, this is accomplished by
finding the point at which an interpolating line between
two time points crosses the baseline value and then
calculating the area separately for the parts on the left
and right of that point. This results in a large overall
AUC for the genes in Fig. 1.
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Selection of Large AUCs

After calculating the baseline, the AUC, and their confi-
dence intervals, these values are compared to determine if
there is a significant difference between the baseline and the
AUC. This is done by testing if the AUC confidence
interval overlaps the baseline confidence interval. For all of
the results shown in this paper, confidence intervals of 80%
were used.

Detection of Up/Down/Biphasic AUCs

Because the proposed algorithm for calculating AUC
accounts for both positive and negative deviations from
baseline, it is possible to distinguish between up-regulation,
down-regulation, and biphasic responses. In the calculation
of AUC, positive and negative contributions to AUC are
tabulated separately. Then, the ratio between these AUC
components and baseline variability is calculated, in
keeping with the overarching idea that the magnitude of
change relative to baseline is of interest. In the case when
there is a response only in one direction followed by a
return to baseline, then only one of the positive and
negative AUCs will be large. If there are both large positive
and large negative AUCs, this indicates a biphasic response.

After the significantly large AUCs are found as described
above, biphasic responses are identified as those where the
positive area is within 50% of the negative area and vice
versa. Then, the remaining responses are classified as either
up-regulation or down-regulation depending on whether
the positive AUC or negative AUC is greater.

Synthetic Data

Indirect response (IDR) models are widely used to represent
inhibitory and stimulatory effects where the direct action of

drugs is on a production or loss process (2,12). Synthetic
data were generated based on IDR model III, which
models the indirect stimulatory effect R of a drug on kin with
the drug having an exponentially decaying concentration C

(t).

dR

dt
¼ kin � 1þ Smax � CðtÞ

SC50 þ CðtÞ
� �

� kout � R ð5Þ

CðtÞ ¼ D=V � e�ðCL=V Þ�t ð6Þ
In these formulas, R0=kin/kout is the initial response, Smax

is the maximum effect, SC50 is the drug concentration
producing 50% of the maximum effect, D is the intravenous
dose, V is the volume, and CL is the clearance. For the
synthetic data used in this study, parameter values of R0=
50, CL=2.5, D=10,000, V=4, Smax=5, SC50=4, kout=0.4,
and kin=20 were used, as in (12). R(t) is sampled at the same
time points as in the experimental data described below: 0,
0.25, 0.5, 0.75, 1, 2, 4, 5, 5.5, 6, 7, 8, 12, 18, 30, 48, and
72 h. Qualitatively, this model shows an early up-regulation
followed by a return to baseline. Therefore, the baseline
value can be estimated by the measurements at the first and
last time points. After the profile was generated for a given
set of parameters, Gaussian noise with a constant relative
standard deviation (RSD) was added to generate an
ensemble of noisy profiles. Noise is added based on the
RSD, rather than using noise with the same standard
deviation despite the current value of the signal, to simulate
biological data in which there is a relationship between
mean value and noise.

Acute Corticosteroid Gene Responses

In addition to the results obtained by using synthetic data in
various conditions, the proposed algorithm was also run on

Fig. 1 Gene expression values for two genes are shown along with the average value at each time point (solid lines) and their baseline values (dashed
lines). Left: The Hal gene shows acute down-regulation followed by a rebound above baseline. Right: The Nudt4 gene shows a similar but inverted
biphasic expression profile. By calculating the up-area and down-area separately and then adding their absolute values, a more complete measure of the
deviation from baseline is obtained.
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real gene expression data to assess its ability to select
biologically relevant genes. The data contain the transcrip-
tional response of rat liver to a bolus dose of 50 mg/kg
methylprednisolone (MPL) (5). It is available in the Gene
Expression Omnibus (GEO) database (13) with accession
number GDS253. Forty-three male adrenalectomized
Wistar rats were sacrificed at 16 time points: 0.25, 0.5,
0.75, 1, 2, 4, 5, 5.5, 6, 7, 8, 12, 18, 30, 48, and 72 h after
dosing; in addition, four more rats were sacrificed at 0 h as
a control group. Isolated RNA from each rat liver was
hybridized to Affymetrix Rat Genome U34A microarrays
to measure the expression values of 8,799 probe sets. This
dataset generally consists of genes that have acute responses
to the drug and eventually return to their original
expression values. So, as for the synthetic data, the
baseline value is estimated by taking the values of the
replicates at the first and last time points. A confidence
interval of 80% is used as the cutoff for determining
significant AUC values.

RESULTS

Synthetic Data

Here, 5,000 synthetic profiles were generated based on the
IDR model, and 5,000 flat profiles were created to simulate
data with no time dependence. Gaussian noise, with RSD
equal to 0.2, 0.4, 0.8, and 1.6, was added to the profiles to
create four synthetic datasets with varying levels of noise
(Fig. 2). To test the ability of the proposed algorithm to

distinguish between these two classes, a receiver operating
characteristic (ROC) curve was generated by varying the
confidence interval cutoff from 0 to 1 and calculating the
number of false positives and true positives in each
scenario, as shown in Fig. 3. The dotted diagonal line
represents the curve that would appear in the case of
random guessing. This procedure was repeated for RSDs of
0.2, 0.4, 0.8, and 1.6. As the noise increases, the ROC
curves move closer to the dashed line, but even at the
highest noise level, the proposed algorithm still can
somewhat distinguish between the two classes.

In these simulations, the drug dose was kept constant at
D=10,000. To investigate what happens as the drug
concentration is changed, synthetic data were generated
for values of D ranging from 10 to 1,000,000 as shown in
Fig. 4. These profiles were run through the proposed
selection algorithm to see what value of D is necessary to
create an AUC that is significantly larger than baseline.
Fig. 5 shows how the response of the proposed algorithm
changes at these different initial drug concentrations. The
black histogram represents all genes, and the gray histo-
gram represents selected genes. If the algorithm was
perfectly able to determine that these genes all deviate
from their baseline values, the two histograms would
completely overlap.

Acute Corticosteroid Responses

When the algorithm is run on the acute corticosteroid
dataset with a confidence interval cutoff of 80% and using
the first and last time points to estimate the baseline, 345

Fig. 2 Synthetic data generated
for indirect response versus time
profiles with four different noise
levels at a single drug dose,
D=10,000.
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genes have significantly large AUCs when compared with
their baseline values. Biphasic responses are detected in many
of these significant genes. The 33 genes that have both large
positive and negative AUCs are shown in Table I along with
the positive and negative contributions to AUC for each
gene. Of the non-biphasic genes with significantly large
AUCs, 139 are up-regulated and 173 are down-regulated,
based on the magnitude of their positive and negative AUCs.
A full list of these genes, along with their positive and
negative AUCs, is available as Supplementary Material.

DISCUSSION

Fig. 5 shows how the proposed method is able to discover
significant AUCs over baseline values for a range of drug
doses. At very low drug doses, it is impossible to distinguish

between the two classes. As D increases, the algorithm
performs better, but it still misses many genes. Interestingly,
the significant genes are only slightly biased towards having
higher than normal AUCs. This is because of the influence
of the baseline value on the result of the significance test. If
the measurements at the first and last time point are very
close together, then the baseline estimate will have a very
tight confidence interval. In these cases, the AUC estimate
can be lower and still be called significant. But when there
is substantial uncertainty in the baseline value, only a very
high AUC will be sufficiently greater than the baseline
confidence interval. The critical importance of the baseline
estimate on the output of this algorithm is a key difference
between this AUC method and traditional gene expression
significance tests. When considering a significance test
designed to select patterns from high-dimensional data, it
is important to consider the prevalence of false positives in
the output (14). As a trivial example, running 1,000
hypothesis tests at a p-value cutoff of 0.05 should lead to
the rejection of the null hypothesis 50 times, given random
data. The proposed algorithm does select a small number
of genes from high-dimensional microarray data; however,
when applying the algorithm to random data of the same
size as the real experimental data, only ~10% as many
genes are selected, suggesting that the vast majority of
identified patterns do not arise by chance. Furthermore,
biphasic responses are even less likely to arise by chance,
with only ~5% as many biphasic genes detected in random
data as in real data; this is likely because it is highly unlikely
for equally large random perturbations to occur in both
directions relative to baseline.

Bootstrapping is used to calculate the AUCs and their
confidence intervals. While this is more computationally
intensive and complex than a parametric calculation of the
confidence interval, AUC values in general cannot always
be accurately modeled by a normal distribution. To
assuage its computational cost, the bootstrapping algorithm
is parallelized (Supplementary Material, auc_bootstrap.m),

Fig. 3 ROC curve showing the ability of the proposed algorithm to accurately
discover genes with an underlying time-dependent pattern with random noise
at several relative standard deviations (RSD). RSD=0.2, AUROC=1;
RSD=0.4, AUROC=0.995; RSD=0.8, AUROC=0.944; RSD=1.6,
AUROC=0.839. The dashed diagonal line represent the parity line.

Fig. 4 Synthetic data generated
for indirect response versus time
profiles with six different dose (D)
levels, all with the same amount of
noise, RSD=0.8.
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Fig. 5 Histograms of the AUCs
of the synthetic data for various
values of D given the same noise
level RSD=0.8. The black
histogram shows all of the
synthetic genes, while the gray
histogram shows only the
significant synthetic genes. When
the gray histogram is small, that
means that few genes are selected
by the algorithm. If all genes were
selected, the black and gray
histograms would overlap entirely.

Gene name Accession no. Positive AUC Negative AUC

Hal AB002393_g_at 8.72 11.81

Inhbe /// LOC497821 AF089825_at 5.26 7.77

Mosc2 AF095741_at 9.77 8.60

Mosc2 AF095741_g_at 5.85 6.82

Cyb5r3 D00636Poly_A_Site#1_s_at 5.64 10.73

Csda D28557_s_at 8.41 6.05

Psmc4 D50695_at 5.32 9.81

Abcc2 D86086_s_at 7.95 7.29

Psma2 E03358cds_g_at 5.19 3.63

Eif2s1 J02646_at 3.44 6.58

Tpm4 J02780_at 5.66 4.45

Nr1d1 M25804_g_at 5.50 10.70

Agtr1a M86912exon_g_at 3.57 6.53

Vhl rc_AA799545_at 6.99 11.60

Rara rc_AA799779_g_at 7.50 7.90

Serbp1 rc_AA800678_g_at 14.95 9.01

Akap12 rc_AA859966_i_at 12.22 8.77

Phb2 rc_AA875054_at 3.74 2.32

Pxmp2 rc_AA875639_at 8.35 6.35

Cct3 rc_AA891107_at 8.98 8.11

Gnpat rc_AA894174_g_at 3.14 2.47

LOC363328 rc_AA894305_at 8.90 5.34

rc_AA943892_at 3.69 4.55

Tcp1 rc_AI104500_at 7.60 3.96

Zadh2_predicted rc_AI229637_at 5.52 5.78

Nudt4 rc_AI237535_s_at 4.54 7.33

Etfa rc_AI639026_at 3.97 2.35

RGD1308373 U14746_at 5.47 10.72

Agt U15211_g_at 5.97 6.86

Entpd1 U21718mRNA_at 4.74 8.07

Mybbp1a U23146cds_s_at 8.32 9.81

Litaf U75392_s_at 3.66 2.14

X70223_at 5.68 8.20

Table I Positive and Negative
Contributions to the AUC for
Genes with Biphasic Responses

Positive and negative AUC contri-
butions for the 33 genes identified
as having biphasic responses are
listed. AUC values have units of
log(intensity)*hr, where the
intensity value is calculated from
the microarray experiments.
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which is important given that parallel processing capabilities
are becoming uniquitous due to cheap multicore processors,
even for researchers without access to dedicated computing
facilities. Therefore, the increased complexity of nonpara-
metric techniques such as bootstrapping is less of a concern
than one might initially imagine.

While variability in AUC has previously been considered
in the literature (7,10,15), this work considers this variability
with respect to uncertainty in the baseline measurement
which is of importance in any pharmacokinetic profile or
pharmacodynamic response that does not have a baseline
of exactly zero. The baseline has been incorporated into
AUC calculation in the case when baseline measurements
from a control group are available at all time points (16),
but the proposed method is flexible in that baseline is
determined from any available experimental data even if it
is just a single time point at t=0.

An advantage of the proposed algorithm is that it can
automatically detect biphasic responses (such as those
shown in Fig. 1) that have large positive and negative
deviations from baseline. Table I lists the genes that were
found to have large positive and negative deviations from
baseline, and Fig. 1 displays the time course plots of two of
those selected genes. In the absence of the separate
calculation of positive and negative AUCs, the AUC would
be calculated as the difference between those two values.
For the identified biphasic genes, these values are given in
the last two columns of Table I. In each case, the positive
and negative AUCs are sufficiently close that they would
almost completely cancel out if they were not calculated
separately. Because the genes in Table I were selected by
calculating the AUCs relative to variable baselines, the
positive and negative areas represent significant deviations
from baseline. Without taking this variability into account,
a signal that just oscillated above and below its baseline
value due to random noise might be identified as having
both positive and negative AUC values, but, since those
oscillations would be small compared to the baseline
variability, that signal would not be selected as having
biphasic characteristics. Thus, the calculation of AUC
compared to baseline can automatically detect biphasic
responses. However, for general gene expression analysis, it
does not perform as well as domain-specific algorithms such
as EDGE (17) for the task of identifying differentially
expressed genes (data not shown). The proposed algorithm
is unique in that it can search directly for biphasic
responses, thus effectively performing some classification
(up/down/biphasic) of the responses at the same time as
testing for significant deviations in AUC relative to
baseline.

Caution is needed when applying any AUC calculation
method to incomplete pharmacodynamic data. Unlike
pharmacokinetics, which usually exhibit a monoexponential

terminal phase allowing easy extrapolation to time infinity,
the return phase for dynamic data to baseline is nearly, but
not exactly, linear (i.e. ΔR/Δt=constant) (18).

The proposed method of calculating the AUC relative
to a variable baseline can be applied in discovering
significant differentially expressed genes, as an alternative
to existing methods, and also to determining specifically
which genes are up-regulated, down-regulated, and
biphasic. As with noncompartmental methods in phar-
macokinetics, this type of analysis should have value in
screening large data-sets and as a preliminary step before
application of specific models with use of more sophis-
ticated regression software. Furthermore, its utility is not
restricted to data from microarray experiments. The
proposed method can characterize the AUC for any time
series data with a non-constant baseline, as is common-
place in pharmacodynamics. An implementation of this
algorithm in MATLAB is available as Supplementary
Material.
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